On mean shift-based clustering for circular data
نویسندگان
چکیده
Cluster analysis is a useful tool for data analysis. Clustering methods are used to partition a data set into clusters such that the data points in the same cluster are the most similar to each other and the data points in the different clusters are the most dissimilar. The mean shift was originally used as a kernel-type weighted mean procedure that had been proposed as a clustering algorithm. However, most mean shift-based clustering (MSBC) algorithms are used for numeric data. The circular data that are the directional data on the plane have been widely used in data analysis. In this paper, we propose a MSBC algorithm for circular data. Three types of mean shift implementation procedures with nonblurring, blurring and general methods are furthermore compared in which the blurring mean shift procedure is the best and recommended. The proposed MSBC for circular data is not necessary to give the number of cluster. It can automatically find a final cluster number with good clustering centers. Several numerical examples and comparisons with some existing clustering methods are used to demonstrate its effectiveness and superiority of the proposed method.
منابع مشابه
On Mean Shift Clustering for Directional Data on a Hypersphere
The mean shift clustering algorithm is a useful tool for clustering numeric data. Recently, Chang-Chien et al. [1] proposed a mean shift clustering algorithm for circular data that are directional data on a plane. In this paper, we extend the mean shift clustering for directional data on a hypersphere. The three types of mean shift procedures are considered. With the proposed mean shift cluster...
متن کاملNovel Circular-Shift Invariant Clustering
Several important pattern recognition applications are based on feature extraction and vector clustering. Directional patterns may be represented by rotation-variant directional vectors, formed from M features uniformly extracted in M directions. It is often required that pattern recognition algorithms are invariant under pattern rotation or, equivalently, invariant under circular shifts of suc...
متن کاملA review of mean-shift algorithms for clustering
A natural way to characterize the cluster structure of a dataset is by finding regions containing a high density of data. This can be done in a nonparametric way with a kernel density estimate, whose modes and hence clusters can be found using mean-shift algorithms. We describe the theory and practice behind clustering based on kernel density estimates and mean-shift algorithms. We discuss the ...
متن کاملOn Convergence of Epanechnikov Mean Shift
Epanechnikov Mean Shift is a simple yet empirically very effective algorithm for clustering. It localizes the centroids of data clusters via estimating modes of the probability distribution that generates the data points, using the ‘optimal’ Epanechnikov kernel density estimator. However, since the procedure involves non-smooth kernel density functions, the convergence behavior of Epanechnikov ...
متن کاملBoosted Mean Shift Clustering
Mean shift is a nonparametric clustering technique that does not require the number of clusters in input and can find clusters of arbitrary shapes. While appealing, the performance of the mean shift algorithm is sensitive to the selection of the bandwidth, and can fail to capture the correct clustering structure when multiple modes exist in one cluster. DBSCAN is an efficient density based clus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft Comput.
دوره 16 شماره
صفحات -
تاریخ انتشار 2012